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RNA Cleavage and Inhibition
of Protein Synthesis by Bleomycin

opment Program of the NCI [14, 15]. The patterns of cell
sensitivity of onconase to all the other agents currently
in the NCI screen database were computed using COM-
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were to other agents known to cause protein synthesisCharlottesville, Virginia 22901
2 Laboratory of Biochemical Physiology inhibition such as MAP 30 [17] and restrictocin, a fungal

RNase [18]. Interestingly, a significant correlation coeffi-Division of Basic Sciences
National Cancer Institute at Frederick cient was found also with BLM.

Since the mechanism of action of onconase in cell-3 SAIC Frederick
4 Developmental Therapeutics Program free systems, and when injected into Xenopus oocytes

[19] as well as in cultured cells [20, 21], involves RNADivision of Cancer Treatment and Diagnosis
National Cancer Institute-Frederick Cancer degradation that results in protein synthesis inhibition,

the possibility that protein synthesis inhibition couldResearch and Development Center
Frederick, Maryland 21702 contribute to the cytotoxicity of BLM was addressed

experimentally. Presently, we demonstrate that BLM
can cause DNA-independent inhibition of protein syn-
thesis in both a cell-free system and in intact cells. TheSummary
relationship of these observations to site-specific RNA
cleavage by onconase and BLM is discussed.Bleomycin is a clinically used antitumor antibiotic long

thought to function therapeutically at the level of DNA
Resultscleavage. Recently, it has become clear that bleomy-

cin can also cleave selected members of all major
Cytotoxic Effects of Onconase on a Panel ofclasses of RNA. Using the computer program COM-
Human Tumor Cell Lines in the NCI AnticancerPARE to search the database established by the Anti-
Drug Screen Led to a Comparison with BLMcancer Drug Screening Program of the National Can-
Five 10-fold dilutions of onconase were applied to acer Institute, a possible mechanism-based correlation
total of 60 human tumor cell lines derived from 9 cancerwas found between onconase, an antitumor ribo-
types (lung, colon, melanoma, renal, ovarian, CNS, leu-nuclease currently being evaluated in phase III clinical
kemia, breast, and prostate) for 2 days before analyzingtrials, and the chemotherapeutic agent bleomycin. Fol-
the results with SRB, a dye that measures the proteinlowing these observations, experimentation revealed
content of cultured cells [22]. A standard dose-responsethat bleomycin caused tRNA cleavage and DNA-inde-
curve for onconase was generated for each cell line thatpendent protein synthesis inhibition in rabbit reticulo-
was evaluated with respect to the concentration thatcyte lysate and when microinjected into Xenopus oo-
caused 50% inhibition of growth in all cell lines (GI50).cytes. The correlation of protein synthesis inhibition
CNS cell lines were the most sensitive with regard toto the previously reported site-specific RNA cleavage
the number of cell lines that were more sensitive thancaused by bleomycin supports the thesis that RNA
the average GI50 (83%; 5 out of 6 sensitive cell lines).cleavage may constitute an important element of the
Nonsmall-cell lung, ovarian, melanoma, renal, andmechanism of action of bleomycin.
breast cancer cell lines were also very sensitive (33%,
33%, 50%, 43%, and 42% sensitive cell lines, respec-

Introduction tively), while leukemia (25%), colon (10%), and prostate
cancer (0%) cell lines were less responsive. Subse-

Bleomycin (BLM) is an antitumor agent ([1] and refer- quently, the patterns of cell sensitivity of onconase to all
ences therein) whose ability to bind to and degrade of the other agents currently in the NCI screen database
DNA has been studied extensively [2–4]. More recently, were computed using COMPARE software [16]. Correla-
cleavage of RNA [5, 6] by BLM has been reported, sug- tion coefficients of 0.87 and 0.83 were found for MAP 30
gesting that RNA could also be a therapeutically relevant [17] and restrictocin, a fungal RNase [18], respectively;
target for BLM [7, 8]. these agents are known to exert their cytotoxicity by

Onconase, a cytotoxic ribonuclease, was isolated inhibiting cellular protein synthesis. Intriguingly, a corre-
from extracts of Rana pipiens oocytes and early em- lation coefficient of 0.71 was found for BLM, an antican-
bryos [9] based upon its antiproliferative/cytotoxic ef- cer antibiotic thought to exert its cytotoxic effects by
fects toward cancer cells [10, 11]. Onconase displays degrading DNA [2–4] and possibly also RNA [5–8]. It
anticancer activity in animal models [12], and a phase may be noted that the database used for this correlation
I/II human clinical trial of onconase as a single agent in contained more than 30,000 compounds, and the next
patients with a variety of solid tumors has been com- best correlation other than BLM was 0.56.
pleted [13], with phase III trials currently in progress. To
compare the effects of onconase with other drugs, it BLM Inhibits Cellular and Cell-free
was submitted to the Cancer Drug Discovery and Devel- Protein Synthesis

To determine whether protein synthesis inhibition was
at least partly responsible for inhibition of cell survival*Correspondence: sidhecht@virginia.edu
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Table 3. Inhibition of Protein Synthesis in Rabbit ReticulocyteTable 1. Sensitivity of Protein Synthesis and Cell Survival to
Onconase and BLM Lysate by BLM

Protein Synthesis Survival % Control
Compound Day Inhibition (IC50) (nM)a (IC50) (nM)b

Treatment � RNasina � RNasina

Onconase 1 1,800 � 140 �10,000 � 275
750 �M BLM 77.3 � 7.5 77.3 � 0.042 1,000 � 1,220 1500 � 30
750 �M Fe(II)•BLM 54.8 � 4.6 58.0 � 2.03 350 � 20 800 � 20
750 �M Fe2� 100.6 � 3.7 90.0 � 1.37 4 � 0.3 25 � 0.7
70 nM angiogenin 19.0 � 1.4 98.4 � 0.8BLM 1 55,000 � 4,300 100,000 � 1,820

2 18,000 � 980 45,000 � 90 In vitro rabbit reticulocyte assays were performed as described in
3 7,500 � 250 30,000 � 500 Experimental Procedures. The results from three separate experi-
7 100 � 3 100 � 2 ments were combined and are expressed as the percentage of

mock-treated controls containing mRNA (100%). The data � SEMSF539 human glioma cells were plated in 96-well microtiter culture
are shown. BLM treatment was not significantly different from Fe2�

plates and treated with varying concentrations of BLM (0.1–100 �M)
treatment. Treatment with Fe(II)•BLM was significantly different fromor onconase (0.0005–8 �M) for 1–7 days. On the indicated days,
Fe2� treatment (p � 0.02).two plates were removed and treated as noted below in footnotes
a RNasin, 40 units/ml.a and b. The IC50, defined as the concentration of test sample which

inhibited protein synthesis or cell viability by 50%, was determined
from semilogarithmic plots in which protein synthesis or cell viability
as a percentage of control (buffer-treated cells) was plotted versus

trations of BLM inhibited cell-free protein synthesis. How-test protein concentration. The data � SEM shown are representa-
ever, initially it was observed that 750 �M Fe(II)•BLM de-tive of three experiments with each point in triplicate.
creased cell-free, DNA-independent protein synthesisa One plate was labeled with [14C]leucine for 1–2 hr and protein syn-

thesis was determined as described in Experimental Procedures. to 55% of that obtained with mock-treated lysates (Table
b The second plate was treated with WST as described in Experimen- 3). BLM requires a metal ion such as Fe2� to cause
tal Procedures to determine cell viability. oxidative cleavage of DNA [2–4] as well as RNA [5–8].

The results in Table 3 show that BLM alone had a much
smaller effect than Fe(II)•BLM, and Fe2� alone did not
significantly affect protein synthesis. Therefore, inhibi-by BLM, human SF539 glioma cells were treated with

onconase or BLM, and both protein synthesis inhibition tion of protein synthesis can reasonably be attributed
to Fe(II)•BLM. Since protein synthesis inhibition byand cell survival were determined in parallel experi-

ments. Measurements were made on days 1, 2, 3, and Fe(II)•BLM could in principle have been caused by trace
contamination with RNases, the results were repro-7 after addition of the drugs; in every instance protein

synthesis inhibition preceded effects on cell survival duced in the presence of RNasin, an RNase inhibitor.
Again, 750 �M Fe(II)•BLM decreased protein synthesis(Table 1). A correlation analysis between protein synthe-

sis inhibition and cell survival showed that at 50% inhibi- to 58% of that produced by mock-treated lysates, even
in the presence of enough RNasin to completely inhibittion of protein synthesis onconase killed 55% of the

cells (Table 2). This was similar to results obtained pre- angiogenin (70 nM; Table 3), a human plasma RNase
[25, 26] and potent inhibitor of protein synthesis in rabbitviously for onconase [21]. Similarly, at 50% inhibition of

protein synthesis inhibition BLM killed 60% of the cells. reticulocyte lysate [26] (Table 3). Inhibition of protein
synthesis by Fe(II)•BLM was concentration dependent,These results show that the effects of both onconase

and BLM on protein synthesis and cell survival are very causing a decrease in protein synthesis over a range of
50 to 1000 �M from 78% to 42% of mock-treated lysatessimilar.

Both rabbit reticulocyte lysate [19] and Xenopus oo- (data not shown). Additionally, the decrease in CPM
was reflected in a uniform decrease in all of the labeledcytes [23, 24] have been used extensively as model

systems to study agents that inhibit cellular protein syn- protein when the newly synthesized [35S]methionine pro-
teins were analyzed by SDS gel electrophoresis (datathesis. Thus, both of these systems were used to de-

termine whether BLM could inhibit protein synthesis not shown).
Inhibition of protein synthesis in the reticulocyte lysatedirectly. Subsequent results showed that lower concen-

Table 2. Correlation Between Onconase- and BLM-Induced Inhibition of Protein Synthesis and Cell Survival

Protein Synthesis IC50 Survival Killing at 50% Inhibition
Compound Inhibition (IC50) (nM)a (IC50) (nM)b of Protein Synthesisc

Onconase 1,800 1,500 55%
BLM 55,000 45,000 60%

SF539 human glioma cells were plated in 96-well microtiter culture plates and treated with varying concentrations of BLM or onconase as
described in Experimental Procedures.
a One day after treatment, half of the plates were labeled with [14C]leucine for 1–2 hr, and protein synthesis was determined as described in
Experimental Procedures.
b Two days after treatment, the remaining plates were treated with WST as described in Experimental Procedures to determine cell viability.
c Both protein synthesis at day 1 and cell survival at day 2 were plotted as functions of the concentration of onconase or BLM, and IC50 values
for each were calculated. The percentage of cells killed at the concentration of onconase or BLM that caused 50% inhibition of protein
synthesis was determined from the graph.
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Figure 1. Effect of tRNAs on Luciferase Synthesis Following Treat-
ment with Fe(II)•BLM A5

Reticulocyte lysate was treated with Fe(II)•BLM A5 at the indicated
concentration in the presence of 40 U of RNasin at 20�C for 15 min.
After sufficient time had elapsed for bleomycin inactivation, protein
synthesis was carried out as described in Experimental Procedures,
either without or with the prior addition of a mixture of calf liver

Figure 2. BLM Did Not Cause Extensive Degradation of RNA intRNAs. Lane 1, untreated lysate; lane 2, lysate treated with 100 �M
Reticulocyte Lysates or Xenopus OocyteFe2�; lane 3, 100 �M BLM A5; lane 4, 50 �M Fe(II)•BLM A5; lane 5,

50 �M Fe(II)•BLM A5, then 40 �g/ml calf liver tRNAs; lane 6, 100 �M Total RNA was isolated from lysates of the experiment described
Fe(II)•BLM A5; lane 7, 100 �M Fe(II)•BLM A5, then 40 �g/ml calf liver in Table 3 ([A] and [B]) or from oocytes (Table 4; [C] and [D]) and
tRNAs. analyzed on 1.4% formaldehyde agarose gels to assess rRNA degra-

dation ([A] and [C]) or 10% TBE gels to monitor tRNA degradation
([C] and [D]).

was also studied in the presence of firefly luciferase (A) Lane 1, control; lane 2, BLM; lane 3, Fe(II)•BLM; lane 4, Fe2�.
mRNA. As shown in Figure 1, treatment of the lysate (B) Lane 1, tRNA standard; lane 2, untreated control; lane 3, BLM;

lane 4, Fe(II)•BLM; lane 5, Fe2�.with 50 �M Fe(II)•BLM A5 resulted in a 66% decrease
(C) Lane 1, untreated control; lane 2, BLM; lane 3, Fe(II)•BLM; lanein the production of luciferase, while 100 �M BLM A5
4, Fe2�.alone had only a modest effect (22% inhibition, presum-
(D) Lane 1, tRNA standard; lane 2, untreated control; lane 3, BLM;ably due to the presence of adventious metal ions in
lane 4, Fe(II)•BLM; lane 5, Fe2�.

the lysate), and luciferase synthesis was actually slightly
increased in the presence of 100 �M Fe2�. As shown in
lane 5, admixture of tRNAs to the 50 �M Fe(II)•BLM of that obtained with gelatin-injected oocytes (Table 4).
A5-treated lysate completely restored the ability of the Therefore, although less potent than onconase, BLM
lysate to synthesize luciferase. In contrast, the addition was nearly as effective as onconase (33 nM) in decreas-
of ribosomes to the Fe(II)•BLM A5-treated lysate had ing the magnitude of protein synthesis in Xenopus oo-
no restorative effect on luciferase synthesis (data not cytes (Table 4). To ensure that protein synthesis inhibi-
shown). When treated with 100 �M Fe(II)•BLM A2, lucifer- tion in the oocyte could be independent of DNA
ase synthesis by the lysate was reduced further to 14% cleavage, the translation of an exogenous mRNA was
of control but could not be restored completely by tRNA examined. Luciferase mRNA was coinjected into the
addition. Thus, it appeared that oxidative destruction of oocyte with 250 �M BLM (Table 4), and translation of
one or more tRNAs by Fe(II)•BLM was primarily respon- the exogenous mRNA was decreased to 29% of control.
sible for the diminution of the luciferase synthesis by
the luciferase mRNA-programmed reticulocyte lysate.

While the experiments carried out in Figure 1 argue Characterization of Reticulocyte and Oocyte RNA
after BLM Treatmentthat Fe2� or some other metal ion may be required for

protein synthesis inhibition by bleomycin, the cytotoxic RNA was isolated from BLM-treated lysates or oocytes
described in Tables 3 and 4 and was examined by form-effects of the drug obtained on cultured SF539 cells

(Table 1) were elicited following admixture of metal-free aldehyde agarose gel electrophoresis to assess the ma-
jor rRNAs (Figures 2A and 2C) or by electrophoresis onBLM. Presumably, this resulted from the presence of

intracellular metal ions sufficient to support oxidative 20% TBE gels to assess tRNA (Figures 2B and 2D).
Extensive degradation of RNA was not discernible indamage by BLM, as suggested in lane 3 of Figure 1. To

assess this possibility, we measured protein synthesis the BLM-treated lysates (Figures 2A and 2B) or oocytes
(Figures 2C and 2D) at concentrations that had inhibitedin Xenopus oocytes following administration of BLM by

microinjection. protein synthesis in each system, although some dimi-
nution in tRNA levels was apparent. In contrast, onco-As shown in Table 4, the injection of 125 �M BLM

into Xenopus oocytes reduced protein synthesis to 15% nase visibly degraded tRNA in both reticulocyte lysates
and oocytes [19].of control. BLM coinjected with Fe2� was only slightly

more inhibitory (7% of control), and this incremental The ability of Fe(II)•BLM to effect the cleavage of some
tRNA isoacceptors was studied in additional experi-effect may have been due to the metal ion itself since

Fe2� alone decreased oocyte protein synthesis to 59% ments. Onconase was also employed, albeit at lower
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Table 4. Inhibition of Protein Synthesis in Xenopus Oocytes by Onconase and BLM

Treatment Response % Control

Experiment A CPM

Control, uninjected 269,000 � 19,000 100
Control injected with 0.01% gelatin 258,000 � 12,000 96
125 �M BLM 41,000 � 11,000 15
125 �M Fe(II)•BLM 20,000 � 4,000 7
125 �M Fe2� 152,000 � 6,000 57
33 nM onconase 12,000 � 100 4

Experiment B Fluorescence

Control, uninjected 24,000 � 2,000 100
250 �M BLM 7,000 � 2,000 29

The indicated agents were injected into Xenopus oocytes. Inhibition of protein synthesis and luciferase activity were determined as described
in Experimental Procedures. Data is representative of two different experiments with each determination performed in triplicate. Data shown
are � SEM. In Experiment A, injected oocytes were labeled with [35S]methionine and analyzed for the incorporation of the labeled methionine
into protein. All injections included 80 U/ml RNasin. BLM, Fe(II)•BLM, and onconase were not significantly different from each other (p � 0.2
and 0.12, respectively). These treatments were significantly different from the control, control � gelatin, and Fe2� (p � 0.01). In Experiment
B, luciferase mRNA was microinjected into the oocytes and luciferase activity was determined. BLM was shown not to inhibit light production
by luciferase directly. BLM-treated oocytes were significantly different from control oocytes (p � 0.004).

concentration (0.15 nM) than those employed in Table cellular protein synthesis, as well as on the proposal that
site-specific cleavage of RNA could be a therapeutically4 (33 nM) and in earlier experiments [19] that resulted

in total degradation of tRNA. Rabbit reticulocyte lysate relevant target for BLM [7, 8], we reasoned that degrada-
tion of cellular RNA by BLM could also result in proteinwas treated with 100 �M Fe(II)•BLM A5 or 0.15 nM onco-

nase, and the RNAs in the lysate were then radiolabeled synthesis inhibition. Presently, we describe an experi-
mental test of that hypothesis. It may be noted that weby an exchange reaction [27] in the presence of

[	-32P]ATP, polynucleotide kinase, and excess unlabeled undertook this analysis in spite of early studies that
failed to document RNA cleavage [29–32], in the beliefADP. As shown in Figure 3, the ribosomal RNAs at the

top of the gel were largely unaffected under these condi- that the highly selective nature of BLM-mediated RNA
cleavage [6–8] had precluded the observation of keytions, but several tRNA isoacceptors were degraded

both by Fe(II)•BLM A5 and by onconase. Commercial RNA cleavage events.
Since the assessment of cytotoxicity in the NCI drugrabbit reticulocyte lysate is supplemented with calf liver

tRNAs; an isoacceptor susceptible to Fe(II)•BLM A5 and screen was obtained by applying dilutions of each test
compound to the cells for 2 days before analyzing theonconase was purified from a mixture of calf liver tRNAs

by preparative gel electrophoresis and is shown in lane results with SRB, a pink anionic dye that measures cellu-
lar protein content [22], it was necessary to demonstrate6 of Figure 3A.

The 5
-32P end-labeled tRNA shown in lane 6 of Figure that protein synthesis inhibition could be used as an
indication of BLM cytotoxicity in cultured cells. Protein3A was treated with Fe(II)•BLM A5 and onconase to

determine whether the sites of cleavage mediated by synthesis inhibition preceded effects on cell survival
after treatment with either onconase or BLM. A correla-both agents were the same. As shown in Figure 3B,

this tRNA isoacceptor was cleaved at several sites by tion analysis between protein synthesis and cell survival
was similar for both drugs (observed cell kill at 50%Fe(II)•BLM A5, but none of the major sites of cleavage

corresponded to the sites cleaved by onconase. inhibition of protein synthesis was 55% and 60% for
onconase and BLM, respectively [Table 2]). Emetine is
a potent and irreversible inhibitor of ribosomal translo-Discussion
cation and kills cells by inhibiting protein synthesis. A
similar analysis between inhibition of protein synthesisThe National Cancer Institute Anticancer Drug Screen-

ing Program has tested thousands of compounds for inhibition and survival showed that at 50% inhibition of
protein synthesis only 15% of the cells were killed [21].antitumor activity against a panel of 60 human tumor cell

lines, thereby establishing an extensive set of reference Therefore, both onconase and BLM are considerably
more cytotoxic than emetine, suggesting that mecha-data [14, 15]. Compounds with similar mechanisms of

action have reproducibly shown similar patterns of cyto- nisms in addition to protein synthesis inhibition contrib-
ute to the cell death actions of onconase and BLMtoxicity, and the COMPARE computer program [16] was

developed to search the database of agents already through their effects on damaging tRNA, consistent with
the predicted similarities in their actions.tested against the cytotoxicity pattern of newly tested

compounds. Although not infallible in its predictive More direct assessments of the effect of BLM on DNA-
independent protein synthesis were obtained using thecapabilities, this type of analysis has been valuable in

predicting mechanism-based correlations from the NCI rabbit reticulocyte lysate as well as a Xenopus oocyte
microinjection system (Figure 1, Tables 3 and 4). In thoseanticancer screen database [28]. Therefore, based on

the correlation of the BLM cytotoxicity profile in the NCI assay systems, BLM inhibited protein synthesis inde-
pendent of any effect on DNA. BLM was particularlyanticancer screen with agents known to act by inhibiting
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The ability of individual RNAs to restore protein-syn-
thesizing capability to a rabbit reticulocyte lysate system
was studied following treatment with bleomycin A5. As
shown in Figure 1, treatment with 50 �M Fe(II)•BLM A5

diminished the synthesis of luciferase to about one third
of the original value. Following BLM self-inactivation
[35–37], admixture of unfractionated calf liver tRNAs
completely restored the protein-synthesizing capability
of the treated lysate. Analogous addition of rabbit reticu-
locyte ribosomes to the BLM-treated lysate failed to
restore protein synthesis, arguing that one or more
tRNAs constitutes a critical target for BLM. It may be
noted, however, that following treatment with a higher
(100 �M) concentration of Fe(II)•BLM A5, the addition of
calf liver tRNAs effected only partial restoration of pro-
tein synthesis.

In parallel with assessing the effect of BLM on protein
synthesis, both lysate and oocyte RNA were examined
to determine whether RNA cleavage could be correlated
to the inhibition of protein synthesis, as had been shown
previously for onconase [19]. Using the same methods
of detection that had revealed tRNA degradation by
onconase, only limited tRNA cleavage was seen in BLM-
treated samples (Figure 2). In view of these results, the
ability of Fe(II)•BLM to cleave tRNA using assay condi-
tions previously reported [6] was confirmed by using
low-voltage, low-resolution electrophoresis [38] to look
at RNA fragments rather than specific cleavage sites
(data not shown). Interestingly, it was also found that

Figure 3. Transfer RNA Isoacceptor and Site Selectivity of Cleavage the cleavage of a 32P-labeled tRNA by Fe(II)•BLM was
by BLM and Onconase diminished in the presence of rabbit reticulocyte lysate.
(A) Degradation of individual rRNAs and tRNA isoaceptors by It has been reported that RNA cleavage by Fe(II)•BLM
Fe(II)•BLM A5 and onconase. Rabbit reticulocyte lysate was treated can be inhibited in the presence of Mg2� [39]; the pres-
with Fe(II)•BLM A5 or onconase, then 5
-32P labeled in the presence

ence of Mg2� in the lysate and oocyte systems mayof [	-32P]ATP � ADP � polynucleotide kinase and analyzed by poly-
well have resulted in the diminution of observed RNAacrylamide gel electrophoresis. Ribosomal RNAs migrated at the

top of the gel; tRNAs in the middle and lower portions of the gel. cleavage in Figure 2.
Lane 1, untreated control; lane 2, 100 �M Fe2�; lane 3, 100 �M BLM Holmes et al. [40] have also noted that RNA cleavage
A5; lane 4, 100 �M Fe(II)•BLM A5; lane 5, 0.15 nM onconase, lane 6, by Fe(II)•BLM is more selective in the presence of physi-
isolated calf liver tRNA found to be susceptible to cleavage both ological concentrations of Mg2� and Na� and have ar-
by Fe(II)•BLM A5 and by onconase.

gued that this may reflect an important source of selec-(B) Sites of tRNA cleavage by Fe(II)•BLM A5 and onconase. A 5
-32P
tivity in the action of the drug as a therapeutic agent.end-labeled tRNA isolated from a mixture of calf liver tRNAs by

preparative gel electrophoresis was treated with Fe(II)•BLM A5 or Accordingly, we sought to determine whether there were
onconase and then analyzed by polyacrylamide gel electrophoresis. specific tRNA isoacceptors affected by Fe(II)•BLM. Fol-
Lane 1, untreated tRNA; lane 2, 100 �M Fe2�; lane 3, 100 �M BLM lowing treatment of lysate with Fe(II)•BLM A5, RNAs
A5; lane 4, 25 �M Fe(II)•BLM A5; lane 5, 50 �M Fe(II)•BLM A5; lane present in the lysate were 5
-32P end labeled and ana-
6, 100 �M Fe(II)•BLM A5; lane 7, 0.15 nM onconase; lane 8, 0.30 nM

lyzed by polyacrylamide gel electrophoresis. Severalonconase; lane 9, aq. NaOH; lane 10, C � U lane; lane 11, G lane;
tRNAs were found to decrease in abundance followinglane 12, A � G lane.
treatment with Fe(II)•BLM A5. Intriguingly, some of these
tRNAs were also degraded selectively by low concentra-effective when injected into oocytes without any added
tions of onconase (Figure 3A), suggesting a basis formetal ions, presumably due to the presence of adventi-
the similar behavior of these two agents in the 60-cell-tious metal ions within the cell as well as conditions
line panel. As shown in Figure 3B, however, Fe(II)•BLMcompatible with oxidative degradation of RNA within the
A5 and onconase cleaved one susceptible tRNA isoac-cell. However, it is conceivable that the effects mediated
ceptor at different sites.following application of metal-free BLM could also re-

It may be noted that while the concentrations of BLMflect an effect of metal-free BLM in the oocyte, since
employed in the experiments carried out here were rela-sequence-specific hydrolysis of RNA by BLM in the ab-
tively high, this simply reflects the absence of addedsence of added metal ions has been reported [33]. In
reducing agents, which greatly potentiate DNA [2–4] andthe oocyte, protein synthesis is encoded almost entirely
RNA [6–8, 40] cleavage by BLM. The reductants typicallyby maternal transcripts [34], but, to underscore DNA
employed in biochemical experiments contain func-independence in the oocyte, the effect of BLM on protein
tional groups that can participate in metal ion coordina-synthesis was also determined under conditions in
tion, thereby potentially altering the structure andwhich the translation of exogenous mRNA was mea-

sured. behavior of the antitumor agent under study. The pur-
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poseful omission of reductants here is intended to facili- nase (which does not cleave DNA at all) in the COMPARE
algorithm and cleaves the same tRNAs as onconasetate mechanistic analysis of the observations that have

been made. The omission of reductants also facilitated argues strongly that RNA may be a therapeutically
relevant target for BLM.a better understanding of the intrinsic potency of BLM in

mediating single biochemical transformations, although
the control of key experimental parameters to assure Experimental Procedures
quantitative reproducibility of experiments can require

Materialscareful attention to issues such as the order and timing
BLM, a clinically used mixture of congeners consisting primarily ofof addition of reagents [41], such that some variability
BLM A2 and BLM B2, was obtained from the National Cancer Institute

is typically observed nonetheless. (NCI) anticancer drug screen and was fractionated as described
Further, in comparison with a study by Poddevin et [46]. Onconase is a registered trademark of Alfacell Corporation

al. [42], the implications of which are that BLM is not (Bloomfield, NJ) and was obtained as lyophilized protein. Angiogenin
was purified as described previously [23]. Prepoured TBE gels weretaken up readily by cultured cells, recent confocal mi-
obtained from Novex (San Diego, CA). Human placental ribo-croscopy experiments that monitored the concentration
nuclease inhibitor (RNasin), Brome Mosaic Viral mRNA, luciferaseof bleomycin in the cytoplasm of cultured HeLa cells
mRNA, and Flexi rabbit reticulocyte lysate translation system were

by virtue of the intrinsic fluorescence of the bithiazole purchased from Promega (Madison, WI). The tRNA translation mix
moiety actually suggest that BLM is concentrated selec- and T4 polynucleotide kinase were from GIBCO-BRL (Grand Island,
tively within these cells. Specifically, incubation of HeLa NY), and yeast tRNAPhe was obtained from Sigma Chemicals (St

Louis, MO). L-[35S]methionine (1,134 Ci/mmol) and [14C]leucine (310cells in the presence of 50 �M BLM resulted in an equilib-
mCi/mmol) were purchased from DuPont-New England Nuclearrium intracellular concentration of approximately 3 mM
(Beverly, MA); [	-32P]ATP (6000 Ci/mmol) was from Amersham (Ar-BLM within 2 min; the use of 2 mM BLM in the incubation
lington Heights, IL).

medium produced an intracellular concentration of the
drug estimated at 40 mM in the same time frame.

Cell CultureThe present study provides further support for the
SF539 human glioma cells were obtained from and grown as speci-

suggestion [7, 8] that tRNA cleavage may constitute an fied by the American Type Culture Collection (Rockville, MD) in
important locus of action for bleomycin. Studies that Dulbecco’s modified Eagle’s medium containing 10% fetal calf se-

rum, 2 mM glutamine, and 10 �g/ml gentamycin. All cells were grownmay help to define the spectrum of tRNA isoacceptors
at 37�C in 5% CO2 in a humidified atmosphere.susceptible to cleavage by bleomycin are underway.

In addition to its possible action on tRNA, it must be
Cancer Drug Discovery and Development Programacknowledged that cellular processes such as uptake
of the National Cancer Instituteand detoxification can be important in the expression
The experimental and analytical details of the NCI cancer screenof cell toxicity by an applied agent, and these may affect
have been described [14, 15]. Onconase was submitted to the

the behavior of BLM as well. screen twice. The relative sensitivity of each cell line was compared
In addition to the well-known cytotoxic effects on bac- to the average sensitivity of all the cell lines with respect to the

terial cells resulting from ribosomal RNA targeting by concentration causing 50% inhibition of growth (GI50). The patterns
of cell sensitivity of onconase to all the other agents in the NCIagents such as the aminoglycosides, erythromycin, and
screen database were computed using COMPARE software [16].colicin E3, the cytotoxic ribonuclease colicin E5 has

been shown to function by inhibiting protein synthesis
Cytotoxicity Assaysat the level of tRNA cleavage [43, 44]. While the mecha-
Protein synthesis was measured as described previously [23, 24].nisms of cell death induced by agents such as onconase
Briefly, cells were plated (at concentrations of 2.5 � 104 cells/ml) inare clearly complex [21], sustained tRNA degradation
96-well microtiter plates in 100 �l of Dulbecco’s minimum essential

with concomitant inhibition of protein synthesis un- medium supplemented with 10% heat-inactivated fetal bovine se-
doubtedly contributes to the observed cytotoxicity. rum, sodium pyruvate, and nonessential amino acids; additions were

made in a total volume of 10 �l (10% of the final volume), and theMore generally, there is accumulating evidence that tar-
plates were incubated at 37�C for the times indicated. Phosphate-geting RNA can lead to apoptotic cell death by activation
buffered saline (PBS) containing 0.1 mCi of [14C]leucine was addedof cellular stress response mechanisms [45]. Thus, the
for 2 hr, and the cells were harvested onto glass fiber filters usingeffects noted for BLM in the present study support the
a PHD cell harvester from MEPCO Scientific (Arnold, MD), lysed,

thesis that RNA may constitute a reasonable locus of and washed with water to remove unincorporated [14C]leucine, then
action for this antitumor agent. dried with ethanol and counted. Cells (2500 in 0.1 ml) were placed

in each well of a 96-well plate 24 hr before treatment. On the day
of treatment, 10 �l test samples were added to the appropriate wells,
and the cells were incubated for 1–7 days at 37�C in a humidified CO2Significance
incubator. A colorimetric assay based on cleavage of the tetrazolium
salt WST (Roche Molecular Biochemcials, Indianapolis, IN) to a solu-In previous experiments, it has been shown that BLM
ble formazan salt was used to determine cell viability following the

is capable of cleaving some members of all classes manufacturer’s instructions. WST (10 �l) was added directly to each
of RNAs, including tRNAs, rRNAs, mRNAs, and the well, and the plates were incubated for a further 60–90 min. Ab-

sorbance at 460 nm was determined in a MR4000 microtiter plateRNA strands of DNA-RNA heteroduplexes. The present
reader (Dynatech Laboratories, Chantilly, VA). Each experiment wasexperiments demonstrate for the first time that BLM
performed at least twice with triplicate determinations for eachcan mediate (transfer) RNA cleavage and consequent
point. The IC50, defined as the concentration of test sample whichinhibition of protein synthesis in an intact biological
inhibited protein synthesis by 50%, was determined from semiloga-

system (Xenopus oocytes) as well as in a cell-free rithmic plots in which protein synthesis or cell viability as a percent-
system. Further, the finding that BLM exhibits a strong age of control (buffer-treated cells) was plotted versus test protein

concentration.correlation coefficient with the antitumor RNase onco-
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In Vitro Translation Assays with federal funds from the National Cancer Institute, National Insti-
tutes of Health, under Contract No. NO1-CO-56000. The content ofThe in vitro translation assay was performed as described previously

[47] with the following exceptions: the concentration of magnesium this publication does not necessarily reflect the views or policies of
the Department of Health and Human Services, nor does mentionwas optimized (2.5 mM) using magnesium acetate and the Flexi

Translation system in a total volume of 12.5 �l containing 0.1 M of trade names, commercial products, or organizations imply en-
dorsement by the U.S. Government.HEPES (pH 7.5). When used, a freshly prepared 0.45 mM Fe(N-

H4)2(SO4)2 solution was added in three equal portions as described
[6] at 0, 20, and 40 min during a total reaction time of 60 min at Received: May 21, 2002
30�C. The amount of protein synthesized was determined by the Revised: December 2, 2002
incorporation of [35S]methionine into products precipitable by 10% Accepted: December 2, 2002
trichloroacetic acid (TCA), following the protocol recommended by
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